If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2-2t+24=0
a = -5; b = -2; c = +24;
Δ = b2-4ac
Δ = -22-4·(-5)·24
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*-5}=\frac{-20}{-10} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*-5}=\frac{24}{-10} =-2+2/5 $
| 14h-12h+1=19 | | 5c-15=2+6 | | 15d+-12d=18 | | -8+2x-4x=-4 | | 2^(3x+1)=5^x | | y+135+5+8y-50=180 | | 2x+15=3x-x | | 17x-179=314 | | x2+19x-42=0 | | 11a-9a=14 | | -11+n/8=-13 | | 5a-a-2=14 | | 3(2x-5)=6+2(x-3)= | | 6v-2v+4=16 | | -5d-10d=15 | | 39+3y+y+8=180 | | 20x=1,600 | | A=7/4(h-16) | | x=150(0.85)^3 | | 19-r=10 | | 5(-10-7x)=-295 | | Y=5x^2-20x+22 | | 78+2p+5+p+20=180 | | 2x+15=3x+x | | 0.429a+19=10 | | -9z-(-5z)=12 | | 5(-10-7x=-295 | | 6n=4n+12 | | 2y+20+y+14+82=180 | | 6p-3p-1=14 | | -34x+23=40 | | 4-(3x-5)=6-(2x+7)= |